A land mine is an explosive device concealed under or on the ground and designed to destroy or disable enemy targets, ranging from combatants to vehicles and tanks, as they pass over or near it. Such a device is typically detonated automatically by way of pressure when a target steps on it or drives over it, though other detonation mechanisms are also sometimes used. A land mine may cause damage by direct blast effect, by fragments that are thrown by the blast, or by both.
The name originates from the ancient practice of military mining, where tunnels were dug under enemy fortifications or troop formations by sappers. These killing tunnels ("mines") were at first collapsed to destroy targets located above, but they were later filled with explosives and detonated in order to cause even greater devastation. Nowadays, in common parlance, land mines generally refer to devices specifically manufactured as anti-personnel or anti-vehicle weapons. Though many types of improvised explosive devices ("IEDs") can technically be classified as land mines, the term land mine is typically reserved for manufactured devices designed to be used by recognized military services, whereas IED is used for makeshift devices assembled by paramilitary, insurgent, or terrorist groups.
The use of land mines is controversial because of their potential as indiscriminate weapons. They can remain dangerous many years after a conflict has ended, harming the economy and civilians of many developing nations. With pressure from a number of campaign groups organised through the International Campaign to Ban Landmines, a global movement to prohibit their use led to the 1997 Convention on the Prohibition of the Use, Stockpiling, Production and Transfer of Anti-Personnel Mines and on their Destruction, also known as the Ottawa Treaty. To date, 162 States have joined the treaty.
Use
To create defensive tactical barriers, channeling attacking forces into predetermined fire zones or slowing an invading force's progress to allow reinforcements to arrive. To act as passive area-denial weapons (to deny the enemy use of valuable terrain, resources or facilities when active defense of the area is not desirable or possible). Land mines are currently used in large quantities mostly for this first purpose, thus their widespread use in the demilitarized zones (DMZs) of likely flashpoints such as Cyprus, Afghanistan and Korea. As of 2013, the only governments that still laid land mines were Myanmar in its internal conflict, and Syria in its civil war. Land mines continue to kill or injure at least 4,300 people every year, even decades after the ends of the conflicts for which they were placed.
Characteristics and functioning firing mechanism or other device (including anti-handling devices)
detonator or igniter (sets off the booster charge)
booster charge (may be attached to the fuse, or the igniter, or be part of the main charge)
main charge (in a container, usually forms the body of the mine)
casing (contains all of the above parts)
Anti-tank mines
Section of an anti-tank mine. Note the yellow main charge wrapped around a red booster charge, and the secondary fuze well on the side of the mine designed for an anti-handling device. Anti-tank mines were created not long after the invention of the tank in the First World War. At first improvised, purpose-built designs were developed. Set off when a tank passes, they attack the tank at one of its weaker areas — the tracks. They are designed to immobilize or destroy vehicles and their occupants. In U.S. military terminology destroying the vehicles is referred to as a catastrophic kill (k-kill) while only disabling its movement is referred to as a mobility kill (m-kill). Anti-tank mines are typically larger than anti-personnel mines and require more pressure to detonate. The high trigger pressure, normally requiring 100 kilograms (220 lb) prevents them from being set off by infantry or smaller vehicles of lesser importance. More modern anti-tank mines use shaped charges to focus and increase the armor penetration of the explosives.
Anti-personnel mines
Anti-personnel mines are designed to kill or injure enemy combatants as opposed to destroying vehicles. They are often designed to injure rather than kill in order to increase the logistical support (evacuation, medical) burden on the opposing force. Some types of anti-personnel mines can also damage the tracks or wheels of armored vehicles. Under the Ottawa Treaty, the Parties undertake not to use, produce, stockpile or transfer anti-personnel mines and ensure their destruction. As of early 2016, 162 countries have joined the Treaty. Thirty-six countries, including the People's Republic of China, the Russian Federation and the United States, which together may hold tens of millions of stockpiled antipersonnel mines, are not yet party to the Convention.
Laying mines
Minefields may be laid by several means. The preferred, but most labour-intensive, way is to have engineers bury the mines, since this will make the mines practically invisible and reduce the number of mines needed to deny the enemy an area. Mines can be laid by specialized mine-laying vehicles. Mine-scattering shells may be fired by artillery from a distance of several tens of kilometers. Mines may be dropped from helicopters or airplanes, or ejected from cluster bombs or cruise missiles. Anti-tank minefields can be scattered with anti-personnel mines to make clearing them manually more time-consuming; and anti-personnel minefields are scattered with anti-tank mines to prevent the use of armored vehicles to clear them quickly. Some anti-tank mine types are also able to be triggered by infantry, giving them a dual purpose even though their main and official intention is to work as anti-tank weapons.
Demining
Metal detectors were first used for demining, after their invention by the Polish officer Józef Kosacki. His invention, known as the Polish mine detector, was used by the Allies alongside mechanical methods, to clear the German mine fields during the Second Battle of El Alamein when 500 units were shipped to Field Marshal Montgomery's Eighth Army. The Nazis used captured civilians who were chased across minefields to detonate the explosives. According to Laurence Rees, "Curt von Gottberg, the SS-Obergruppenfuhrer who, during 1943, conducted another huge anti-partisan action called Operation Kottbus on the eastern border of Belorussia, reported that 'approximately two to three thousand local people were blown up in the clearing of the minefields'."
Metal detectors were first used for demining, after their invention by the Polish officer Józef Kosacki. His invention, known as the Polish mine detector, was used by the Allies alongside mechanical methods, to clear the German mine fields during the Second Battle of El Alamein when 500 units were shipped to Field Marshal Montgomery's Eighth Army. The Nazis used captured civilians who were chased across minefields to detonate the explosives. According to Laurence Rees, "Curt von Gottberg, the SS-Obergruppenfuhrer who, during 1943, conducted another huge anti-partisan action called Operation Kottbus on the eastern border of Belorussia, reported that 'approximately two to three thousand local people were blown up in the clearing of the minefields'."
Whereas the placing and arming of mines is relatively inexpensive and simple, the process of detecting and removing them is typically expensive, slow, and dangerous. This is especially true of irregular warfare where mines were used on an ad hoc basis in unmarked areas. Anti-personnel mines are most difficult to find, due to their small size and the fact that many are made almost entirely of non-metallic materials specifically to escape detection.
0 Comments