Header Ads

Booking.com
Breaking News
recent

HAARP Technology


The High Frequency Active Auroral Research Program (HAARP) is an ionospheric research program jointly funded by the U.S. Air Force, the U.S. Navy, the University of Alaska, and the Defense Advanced Research Projects Agency (DARPA).[1] Research done at the HAARP facility has allowed the US military to perfect communications with its fleet of submarines by sending radio signals over long distances.[2][3]Designed and built by BAE Advanced Technologies (BAEAT), its purpose is to analyze the ionosphere and investigate the potential for developing ionospheric enhancement technology for radio communications and surveillance.[4] The HAARP program operates a major sub-arctic facility, named the HAARP Research Station, on an Air Force–owned site near Gakona, Alaska.
 
The most prominent instrument at the HAARP Station is the Ionospheric Research Instrument (IRI), a high-power radio frequency transmitter facility operating in the high frequency (HF) band. The IRI is used to temporarily excite a limited area of the Ionosphere. Other instruments, such as a VHF and a UHF radar, a fluxgate magnetometer, a digisonde (an ionospheric sounding device), and an induction magnetometer, are used to study the physical processes that occur in the excited region. Work on the HAARP Station began in 1993. The current working IRI was completed in 2007, and its prime contractor was BAE Systems Advanced Technologies.[1] As of 2008, HAARP had incurred around $250 million in tax-funded construction and operating costs. It was reported to be temporarily shut down in May 2013, awaiting a change of contractors.
 
HAARP is a target of conspiracy theorists, who claim that it is capable of modifying weather, disabling satellites and exerting mind control over people, and that it is being used as a weapon against Muslim terrorists. Such theorists have blamed the program for causing earthquakes, droughts, storms and floods, diseases such as Gulf War Syndrome and Chronic Fatigue Syndrome, the 1996 crash of TWA Flight 800, and the 2003 destruction of the space shuttle Columbia. Commentators and scientists say that proponents of these theories are "uninformed", as most theories put forward fall well outside the abilities of the facility and often outside the scope of natural science. The HAARP project directs a 3.6 MW signal, in the 2.8–10 MHz region of the HF (high-frequency) band, into the ionosphere. The signal may be pulsed or continuous. Then, effects of the transmission and any recovery period can be examined using associated instrumentation, including VHF and UHF radars, HF receivers, and optical cameras. According to the HAARP team, this will advance the study of basic natural processes that occur in the ionosphere under the natural but much stronger influence of solar interaction, and how the natural ionosphere affects radio signals.
 
This will enable scientists to develop methods to mitigate these effects to improve the reliability or performance of communication and navigation systems which would have a wide range of both civilian and military uses, such as an increased accuracy of GPS navigation and advances in underwater and underground research and applications. This may lead to improved methods for submarine communication or an ability to remotely sense and map the mineral content of the terrestrial subsurface, and perhaps underground complexes, of regions or countries, among other things. The current facility lacks range to be used in regions like the Middle East, according to one of the researchers involved, but the technology could be put on a mobile platform.[7]
 
The HAARP program began in 1990. The project is funded by the Office of Naval Research and jointly managed by the ONR and Air Force Research Laboratory, with the principal involvement of the University of Alaska. Many other universities and educational institutions of the United States have been involved in the development of the project and its instruments, namely the University of Alaska Fairbanks, Stanford University, Penn State University (ARL), Boston College, UCLA, Clemson University, Dartmouth College, Cornell University, Johns Hopkins University, University of Maryland, College Park, University of Massachusetts Amherst, MIT, Polytechnic Institute of New York University, and the University of Tulsa. The project's specifications were developed by the universities, which are continuing to play a major role in the design of future research efforts.
 
According to HAARP's management, the project strives for openness, and all activities are logged and publicly available. Scientists without security clearances, even foreign nationals, are routinely allowed on site. The HAARP facility regularly (once a year on most years according to the HAARP home page) hosts open houses, during which time any civilian may tour the entire facility. In addition, scientific results obtained with HAARP are routinely published in major research journals (such as Geophysical Research Letters, or Journal of Geophysical Research), written both by university scientists (American and foreign) or by U.S. Department of Defense research lab scientists. Each summer, the HAARP holds a summer school for visiting students, including foreign nationals, giving them an opportunity to do research with one of the world's foremost research instruments.

Research

HAARP's main goal is basic science research of the uppermost portion of the atmosphere, termed the ionosphere. Essentially a transition between the atmosphere and the magnetosphere, the ionosphere is where the atmosphere is thin enough that the sun's X-rays and UV rays can reach it, but thick enough that there are still enough molecules present to absorb those rays. Consequently, the ionosphere consists of a rapid increase in density of free electrons, beginning at ~70 km, reaching a peak at ~300 km, and then falling off again as the atmosphere disappears entirely by ~1,000 km. Various aspects of HAARP can study all of the main layers of the ionosphere. The profile of the ionosphere is highly variable, changing constantly on timescales of minutes, hours, days, seasons, and years. This profile becomes even more complex near Earth's magnetic poles, where the nearly vertical alignment and intensity of earth's magnetic field can cause physical effects like aurorae.
 
The ionosphere is traditionally very difficult to measure. Balloons cannot reach it because the air is too thin, but satellites cannot orbit there because the air is still too thick. Hence, most experiments on the ionosphere give only small pieces of information. HAARP approaches the study of the ionosphere by following in the footsteps of an ionospheric heater called EISCAT near Tromsø, Norway. There, scientists pioneered exploration of the ionosphere by perturbing it with radio waves in the 2–10 MHz range, and studying how the ionosphere reacts. HAARP performs the same functions but with more power and a more flexible and agile HF beam.
Some of the main scientific findings from HAARP include
  1. Generating very low frequency radio waves by modulated heating of the auroral electrojet, useful because generating VLF waves ordinarily requires gigantic antennas
  2. Generating weak luminous glow (measurable, but below that visible with a naked eye) from absorbing HAARP's signal
  3. Generating extremely low frequency waves in the 0.1 Hz range. These are next to impossible to produce any other way, because the length of a transmit antenna is dictated by the wavelength of the signal it must emit.
  4. Generating whistler-mode VLF signals that enter the magnetosphere and propagate to the other hemisphere, interacting with Van Allen radiation belt particles along the way
  5. VLF remote sensing of the heated ionosphere
Research at the HAARP includes
  1. Plasma line observations
  2. Stimulated electron emission observations
  3. Gyro frequency heating research
  4. Spread F observations (blurring of ionospheric echoes of radio waves due to irregularities in electron density in the F layer)
  5. High velocity trace runs
  6. Airglow observations
  7. Heating induced scintillation observations
  8. VLF and ELF generation observations[8]
  9. Radio observations of meteors
  10. Polar mesospheric summer echoes (PMSE) have been studied, probing the mesosphere using the IRI as a powerful radar, and with a 28 MHz radar, and two VHF radars at 49 MHz and 139 MHz. The presence of multiple radars spanning both HF and VHF bands allows scientists to make comparative measurements that may someday lead to an understanding of the processes that form these elusive phenomena.
  11. Research on extraterrestrial HF radar echos: the Lunar Echo experiment (2008).[9][10]
  12. Testing of Spread Spectrum Transmitters (2009)
  13. Meteor shower impacts on the ionosphere
  14. Response and recovery of the ionosphere from solar flares and geomagnetic storms
  15. The effect of ionospheric disturbances on GPS satellite signal quality
  16. Producing high density plasma clouds in Earth's upper atmosphere[11]

Instrumentation and operation

The main instrument at HAARP Station is the Ionospheric Research Instrument (IRI). This is a high power, high-frequency phased array radio transmitter with a set of 180 antennas, disposed in an array of 12x15 units that occupy a rectangle of about 33 acres (13 hectares). The IRI is used to temporarily energize a small portion of the ionosphere. The study of these disturbed volumes yields important information for understanding natural ionospheric processes. During active ionospheric research, the signal generated by the transmitter system is delivered to the antenna array and transmitted in an upward direction. At an altitude between 70 km (43 mi) to 350 km (217 mi) (depending on operating frequency), the signal is partially absorbed in a small volume several tens of kilometers in diameter and a few meters thick over the IRI.
 
The intensity of the HF signal in the ionosphere is less than 3 µW/cm², tens of thousands of times less than the Sun's natural electromagnetic radiation reaching the earth and hundreds of times less than even the normal random variations in intensity of the Sun's natural ultraviolet (UV) energy which creates the ionosphere. The small effects that are produced, however, can be observed with the sensitive scientific instruments installed at the HAARP Station, and these observations can provide information about the dynamics of plasmas and insight into the processes of solar-terrestrial interactions.[12]Each antenna element consists of a crossed dipole that can be polarized for linear, ordinary mode (O-mode), or extraordinary mode (X-mode) transmission and reception.[13][14] Each part of the two section crossed dipoles are individually fed from a custom built transmitter, that has been specially designed with very low distortion. The Effective Radiated Power (ERP) of the IRI is limited by more than a factor of 10 at its lower operating frequencies. Much of this is due to higher antenna losses and a less efficient antenna pattern.
 
The IRI can transmit between 2.7 and 10 MHz, a frequency range that lies above the AM radio broadcast band and well below Citizens' Band frequency allocations. The HAARP Station is licensed to transmit only in certain segments of this frequency range, however. When the IRI is transmitting, the bandwidth of the transmitted signal is 100 kHz or less. The IRI can transmit in continuous waves (CW) or in pulses as short as 10 microseconds (µs). CW transmission is generally used for ionospheric modification, while transmission in short pulses frequently repeated is used as a radar system. Researchers can run experiments that use both modes of transmission, first modifying the ionosphere for a predetermined amount of time, then measuring the decay of modification effects with pulsed transmissions.
There are other geophysical instruments for research at the Station. Some of them are:
  • A fluxgate magnetometer built by the University of Alaska Fairbanks Geophysical Institute, available to chart variations in the Earth's magnetic field. Rapid and sharp changes of it may indicate a geomagnetic storm.
  • A digisonde that provides ionospheric profiles, allowing scientists to choose appropriate frequencies for IRI operation. The HAARP makes current and historic digisonde information available online.
  • An induction magnetometer, provided by the University of Tokyo, that measures the changing geomagnetic field in the Ultra Low Frequency (ULF) range of 0–5 Hz.
The Station is powered by a set of five (5) 2500 kilowatt generators being driven by EMD 20-645-E4 diesel locomotive engines..[5][6]
Enhanced by Zemanta

No comments:

Powered by Blogger.